Mercury bioaccumulation in a stream network.

نویسندگان

  • Martin Tsz Ki Tsui
  • Jacques C Finlay
  • Edward A Nater
چکیده

Mercury (Hg) contamination is common in stream and river ecosystems, but factors mediating Hg cycling in the flowing waters are much less understood than inthe lakes and wetlands. In this study, we examined the spatial patterns of methylmercury (MeHg) concentrations in the dominant groups of aquatic insect larvae across a network of streams (drainage area ranging from 0.5 to 150 km2) in northern California during summer baseflow conditions. We found that, with the exception of water striders, all invertebrate groups showed significant (p < 0.05) increases in MeHg concentrations with drainage area. The largest stream in our study watershed, the South Fork Eel River, had the highest aqueous MeHg concentration (unfiltered: 0.13-0.17 ng L(-1)) while most of the upstream tributaries had aqueous MeHg concentrations close to or below the established detection limits (0.02 ng L(-1)). A filamentous alga abundant in South Fork Eel River (Cladophora glomerata) had an exceptionally high fraction of total-Hg as MeHg (i.e., %MeHg from 50-100%). Since other potential hotspots of in-stream Hg methylation (e.g., surface sediment and deep pools) had %MeHg lower than or similar to surface water (approximately 14%), we hypothesize that Cladophora and possibly other autotrophs may serve as hotspots of in-stream MeHg production in this bedrock-dominated stream. Recent studies in other regions concluded that wetland abundance in the watershed is the predominant factor in governing Hg concentrations of stream biota. However, our results show that in the absence of wetlands, substantial spatial variation of Hg bioaccumulation can arise in stream networks due to the influence of in-stream processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of Mercury Bioaccumulation in Zebra Cichlid (Cichlasoma Nigrofasciatum) Exposed to Sublethal Concentrations of Permethrin

Background: Aquatic ecosystems are frequently subjected to contamination by toxic heavy metals and pesticides, yet very little is known about the influence of pesticides on bioaccumulation of heavy metals in aquatic organisms. Mercury is a toxic metal with no known biological benefit to organisms. Bioavailability of mercury in aquatic environments depends on biological and non-biological parame...

متن کامل

Mercury cycling in stream ecosystems. 3. Trophic dynamics and methylmercury bioaccumulation.

Trophic dynamics (community composition and feeding relationships) have been identified as important drivers of methylmercury (MeHg) bioaccumulation in lakes, reservoirs, and marine ecosystems. The relative importance of trophic dynamics and geochemical controls on MeHg bioaccumulation in streams, however, remains poorly characterized. MeHg bioaccumulation was evaluated in eight stream ecosyste...

متن کامل

Mercury bioaccumulation in northern two-lined salamanders from streams in the northeastern United States.

Mercury (Hg) bioaccumulation in salamanders has received little attention despite widespread Hg contamination of aquatic ecosystems and worldwide amphibian declines. Here we report concentrations of methyl Hg (MeHg) and total Hg in larval northern two-lined salamanders (Eurycea bislineata bislineata) collected from streams in Acadia National Park (ANP), Maine, and Bear Brook Watershed, Maine (B...

متن کامل

Bioaccumulation of mercury in some organs of two fish species from the Sanandaj Gheshlagh Reservoir, Iran

The purpose of this study was to monitor the concentrations of mercury in the edible muscle, gill, liver, and skin of common carp (Cyprinus carpio) and silver carp (Hypophthalmichthys molitrix), in the Sanandaj Gheshlagh Reservoir, Iran. Mercury concentrations were assayed using Shimadzu AA 6600 atomic absorption spectrophotometer, and the results were given as µg/g wet weight. The level of mer...

متن کامل

Aquatic and terrestrial organic matter in the diet of stream consumers: implications for mercury bioaccumulation.

The relative contribution of aquatic vs. terrestrial organic matter to the diet of consumers in fluvial environments and its effects on bioaccumulation of contaminants such as mercury (Hg) remain poorly understood. We used stable isotopes of carbon and nitrogen in a gradient approach (consumer isotope ratio vs. periphyton isotope ratio) across temperate streams that range in their pH to assess ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 43 18  شماره 

صفحات  -

تاریخ انتشار 2009